
Wikidata Logical Rules and Where to Find Them
Naser Ahmadi

naser.ahmadi@eurecom.fr
EURECOM
France

Paolo Papotti
papotti@eurecom.fr

EURECOM
France

ACM Reference Format:
Naser Ahmadi and Paolo Papotti. 2021. Wikidata Logical Rules and Where
to Find Them. In Companion Proceedings of the Web Conference 2021 (WWW
’21 Companion), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3442442.3452343

1 INTRODUCTION
Wikidata is a knowledge base (KB) representing data with a large
collections of interconnected entities. Statements describe the prop-
erty value for any item, such as London is an instance of city. Wiki-
data supports all kinds of applications and it is the structured data
storage for its Wikimedia sister projects.

A benefit of a KB is the ability to define constraints over it. Unfor-
tunately, KBs in general do not come with a set of logical rules and
Wikidata is no exception. Despite the positive impact of users con-
tributing to the coverage and the quality of Wikidata information,
rich logical rules are not part of this effort. Property constraints1
have been defined for over 8K items2, but these are mostly syntactic
checks defined over the value of a property, such as the fact that
an IMDb ID should follow a particular regular expression.

We are interested in soft (approximate) constraints expressed as
dependencies (or logical rules), such as the constraint that “a person
cannot be born after one of her children”. Such rules have proven to
be useful for error detection [4], adding missing facts [3], executing
queries faster, and reasoning [1].

Not only these rules are not stated inWikidata, but, to the best of
our understanding, a way to express them as constraints is still to be
defined in the repository. Moreover, even if primitives get exposed
to the users for this task, manually crafting such rules is difficult
as it requires both domain and technical expertise. Finally, once a
set of semantically valid rules has been identified, these are usually
annotated with a measure of their quality, such as a confidence of
the rule applicability. This is necessary, as there are very few rules
that are exact, i.e., true for each and every case. As an example,
consider a rule stating that “a country has always one capital”. This
is true for most countries, but there are 15 countries that have two
or more capitals. Therefore, the rule has a very high confidence,
but it is not exact. Confidence not only is key to rank rules for user
validation and refinement, but it is also used in applications that
rely on reasoning with soft constraints.

1https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints
2https://w.wiki/YLS

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8313-4/21/04.
https://doi.org/10.1145/3442442.3452343

Rule C H Q

Po
si
tiv

e

𝑃185[𝑑𝑜𝑐𝑡𝑜𝑟𝑎𝑙𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ] (𝑜, 𝑠)
→ 𝑃184[𝑑𝑜𝑐𝑡𝑜𝑟𝑎𝑙𝐴𝑑𝑣𝑖𝑠𝑜𝑟 ] (𝑠, 𝑜)

1 1 1

𝑃22[𝑓 𝑎𝑡ℎ𝑒𝑟 ] (𝑜, 𝑠) → 𝑃40[𝑐ℎ𝑖𝑙𝑑 ] (𝑠, 𝑜) .99 1 1
𝑃26[𝑠𝑝𝑜𝑢𝑠𝑒 ] (𝑜, 𝑠) → 𝑃26(𝑠, 𝑜) .99 1 1

𝑃40[𝑐ℎ𝑖𝑙𝑑 ] (𝑠, 𝑣) ∧ 𝑃40(𝑜, 𝑣) → 𝑃26(𝑠, 𝑜) .88 .9 1
𝑃800[𝑛𝑜𝑡𝑎𝑏𝑙𝑒𝑊𝑜𝑟𝑘 ] (𝑜, 𝑠) → 𝑃170[𝑐𝑟𝑒𝑎𝑡𝑜𝑟 ] (𝑠, 𝑜) .72 .7 1

N
eg
at
iv
e

𝑃40(𝑜, 𝑣) ∧ 𝑃25[𝑚𝑜𝑡ℎ𝑒𝑟 ] (𝑣, 𝑠) ∧ 𝑃40(𝑠, 𝑜) → ⊥ .94 1 1
𝑃1038[𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ] (𝑠, 𝑜) ∧ 𝑃40(𝑠, 𝑜) → ⊥ .93 1 1

𝑃25(𝑜, 𝑣0) ∧ 𝑃26(𝑣1, 𝑣0)
∧𝑃112[𝑓 𝑜𝑢𝑛𝑑𝑒𝑑𝐵𝑦 ] (𝑠, 𝑣1) ∧ 𝑃112(𝑠, 𝑜) → ⊥

.89 1 3

𝑃180[𝑑𝑒𝑝𝑖𝑐𝑡𝑠 ] (𝑠, 𝑜) ∧ 𝑃170[𝑐𝑟𝑒𝑎𝑡𝑜𝑟 ] (𝑠, 𝑜) → ⊥ .32 .2 3

Table 1: Examples of rules mined on Wikidata. We report
between square brackets the label (e.g., spouse) for the
Wikipedia item IDs (e.g., P26) to favor readability.

Collecting a set of high quality rules is an essential but challeng-
ing task to curate Wikidata and to improve the performance of the
applications built on it. The goal of our work is to create a large
collection of rules for Wikidata with their confidence measure. In
this abstract, we report on two directions we have been exploring
to obtain such rules, our results, and how we believe the Wikimedia
community could benefit from this effort.

2 SEARCHING LOGICAL RULES
We first introduce logical rules and then describe two methods that
we are evaluating for collecting Wikidata rules. The first one is a
data mining approach, while the second one is based on the idea of
translating rules from an existing corpus of DBpedia rules.

Logical Rules. A logical rule has the form𝐵 → ℎ(𝑥,𝑦), whereℎ(𝑥,𝑦)
is a single atom or the bottom type (⊥), while 𝐵 is a conjunction
of atoms 𝐵1 (𝑧1, 𝑧2) ∧ 𝐵2 (𝑧3, 𝑧4) ∧ · · · ∧ 𝐵𝑛 (𝑧2𝑛−1, 𝑧2𝑛). An atom is
a predicate connecting two variables, two entities, an entity and a
variable, or a variable and a constant (string or number).

We consider two kinds of rules. The first kind are positive rules,
such as the first rule in Table 1, which identify relationships between
entities, e.g., “if someone is the doctoral student of a second person,
then the second person is her advisor“, or “if two persons have a
child in common, they are in the spouse relation”. The second kind
are negative rules, with ⊥ in the conclusion, which identify data
contradictions, e.g., “if two persons are in the relative relation, one
cannot be the spouse of the other”. A fact, or a contradiction, is
derived from a rule if all the variables in the premise of the rule can
be replaced with constants from the KB.

Rule Mining. Several mining methods have been proposed to iden-
tify rules in large KBs [3, 4]. These approaches are effective, but
computationally expensive and leave to the user the selection and

https://doi.org/10.1145/3442442.3452343
https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints
https://w.wiki/YLS
https://doi.org/10.1145/3442442.3452343


Rule C H Q

Po
si
tiv

e

𝑃40[𝑐ℎ𝑖𝑙𝑑 ] (𝑜, 𝑣) ∧ 𝑃25[𝑚𝑜𝑡ℎ𝑒𝑟 ] (𝑣, 𝑠) → 𝑃40(𝑠, 𝑜) .94 1 1
𝑃1038[𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ] (𝑜, 𝑠) → 𝑃1038(𝑠, 𝑜) .6 1 1
𝑃144[𝑏𝑎𝑠𝑒𝑑𝑂𝑛] (𝑣0, 𝑜) ∧ 𝑃144(𝑣0, 𝑣1)
∧𝑃50[𝑎𝑢𝑡ℎ𝑜𝑟 ] (𝑠, 𝑣1) → 𝑃144(𝑠, 𝑜)

.7 .75 2

𝑃166[𝑎𝑤𝑎𝑟𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ] (𝑠, 𝑣0)
∧𝑃118[𝑙𝑒𝑎𝑔𝑢𝑒 ] (𝑣1, 𝑣0) ∧ 𝑃166(𝑣1, 𝑜) → 𝑃166(𝑠, 𝑜)

.25 .3 4

N
eg
at
iv
e

𝑃569[𝑑𝑎𝑡𝑒𝐵𝑖𝑟𝑡ℎ] (𝑠, 𝑣0) ∧ 𝑃570[𝑑𝑎𝑡𝑒𝐷𝑒𝑎𝑡ℎ] (𝑜, 𝑣1)
∧ > (𝑣0, 𝑣1) ∧ 𝑃26(𝑠, 𝑜) → ⊥

1 1 1

𝑃26[𝑠𝑝𝑜𝑢𝑠𝑒 ] (𝑜, 𝑣) ∧ 𝑃26(𝑠, 𝑣) ∧ 𝑃26(𝑠, 𝑜) → ⊥ .99 1 1
𝑃185[𝑑𝑜𝑐𝑡𝑜𝑟𝑎𝑙𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ] (𝑠, 𝑜) ∧ 𝑃185(𝑜, 𝑠) → ⊥ .95 1 1

𝑃144(𝑠, 𝑜) ∧ 𝑃86[𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟 ] (𝑠, 𝑜) → ⊥ .95 1 2

Table 2: Examples of DBpedia rules translated to Wikidata.

Rule # stms

Po
si
t. 𝑃1038[𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ] (𝑠, 𝑜) → 𝑃1038(𝑜, 𝑠) 13,690

𝑃40[𝑐ℎ𝑖𝑙𝑑 ] (𝑜, 𝑣0) ∧ 𝑃25[𝑚𝑜𝑡ℎ𝑒𝑟 ] (𝑣0, 𝑠) → 𝑃40(𝑠, 𝑜) 226
𝑃185[𝑑𝑜𝑐𝑡𝑜𝑟𝑎𝑙𝑆𝑡𝑢𝑑.] (𝑜, 𝑠) → 𝑃184[𝑑𝑜𝑐𝑡𝑜𝑟𝑎𝑙𝐴𝑑𝑣.] (𝑠, 𝑜) 25

N
eg
at
. 𝑃569(𝑠, 𝑣0) ∧ 𝑃570(𝑜, 𝑣1)∧ > (𝑣0, 𝑣1) ∧ 𝑃26(𝑠, 𝑜) → ⊥ 689

𝑃22[𝑓 𝑎𝑡ℎ𝑒𝑟 ] (𝑜, 𝑠) ∧ 𝑃40(𝑠, 𝑜) → ⊥ 41
𝑃185(𝑜, 𝑠) ∧ 𝑃185(𝑠, 𝑜) → ⊥ 17

Table 3: Examples of rules with the # of missing (top) and in-
correct (bottom) statements detected by every rule in Wiki-
data.

the refinement of the mined rules. For this approach, we use a state
of the art method for mining declarative rules over RDF KBs [4]. We
use a RDF dump of Wikidata, which has been stripped of metadata
such as qualifiers and references to other KBs. We mined 80 positive
and negative rules and report a sample in Table 1.

Translating DBpedia Rules. In this method, we convert the rules
that have been mined over the DBpedia KB in previous work [2].
For every DBpedia rule, we translate its predicates into the equiva-
lent Wikidata properties. For example, property 𝑃184 in Wikidata
corresponds to predicate DoctoralAdvisor in DBpedia. We use the
owl:equivalentProperty information to generate a mapping between
the two KBs for 59 properties. With this method, we obtained 241
Wikidata rules. A sample of these rules is shown in Table 2.

3 EXPERIMENTS
Our experiments show how we (i) verify that we obtain rules of
good quality and (ii) estimate effectively the confidence of the rules.

Metrics. For measuring rule confidence and quality, we use three
metrics [2]. Computed Confidence (C) is estimated by measuring the
rule support, i.e., we count the number of KB facts that support or
violate the rule. Human Confidence (H) is computed by emanually
annotating 20 random samples of a rule’s output. The fraction
of correct new facts or errors is used to estimate the confidence.
Quality Evaluation (Q) is a subjective assessment of the correctness
of the rule. The score varies between 1 (rule is always true) and 5
(rule is illogical), we report the average for two annotators.

Results. As reported in the examples in Tables 1 and 2, both meth-
ods identify rules with high confidence. We report also examples of

0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

Human Confidence

Co
m
pu

te
d
Co

nf
.

Mining Rewriting

Figure 1: Human and computed confidence comparison.

rules with lower confidence values to show that the computed confi-
dence correlates nicely with measures based on human annotation.
We also report in Figure 1 the computed and human confidences
for 40 rules over 18 properties. We grouped rules by their human
confidence (H) and for each group we report a point. The horizontal
(x) axis is the human confidence and the vertical (y) axis represents
the average of the computed confidence (C) for that group of rules.
The plot shows similar correlations between computed and human
confidences for rules obtained with both methods.

Finally, we report in Table 3 the number of missing and incorrect
statements (stms) identified by a sample of exact positive and nega-
tive rules, respectively. For example, the first positive rule identifies
almost 14k statements when the rule is instantiated but the con-
clusion is not in the KB. Similarly, the first negative identifies 689
statements in which the subject is in the spouse relationship with
an object who died before the subject was born.

4 ENRICHWIKIDATA
While our effort shows that good rules can be gathered for Wiki-
data, we still need to make progress to be able to fully transfer
this knowledge into the KB. Adding the building blocks to define
such logical rules to the Wikidata infrastructure is a mandatory
stepping stone, but the implementation is not obvious because of
the uncertain nature of most rules. Even if a few hundreds exact
rules can be defined, the majority of the rules are not exact. What
is the right way to expose and enforce them in Wikidata?

One way to go from the logical form of a rule with high confi-
dence to a fully implemented constraint is to identify and define the
exceptions to the rule. Going back to the example about capitals and
countries, it should be implemented as an exact rules with 15 ex-
ceptions. We are studying how to automatically go from non-exact
rules to exact rules with either more conditions (that narrow their
scope) or with exceptions. Discovering such rules is a challenging
problem, but we believe our effort will equip the Wikidata commu-
nity with the right tools to define and enforce these constraints,
ultimately building a bigger and better KB.

REFERENCES
[1] Naser Ahmadi, Joohyung Lee, Paolo Papotti, and Mohammed Saeed. 2019. Explain-

able Fact Checking with Probabilistic Answer Set Programming. In Conference for
Truth and Trust Online (TTO).

[2] Naser Ahmadi, Thi-Thuy-Duyen Truong, Le-Hong-Mai Dao, Stefano Ortona, and
Paolo Papotti. 2020. RuleHub: A Public Corpus of Rules for Knowledge Graphs.
Journal of Data and Information Quality (JDIQ) 12, 4 (2020), 1–22.

[3] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. 2020. Fast and exact rule
mining with amie 3. In European Semantic Web Conference. Springer, 36–52.

[4] Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. 2018. Robust
Discovery of Positive and Negative Rules in Knowledge Bases. In 34th IEEE Inter-
national Conference on Data Engineering, ICDE. 1168–1179.


	1 Introduction
	2 Searching Logical Rules
	3 Experiments
	4 Enrich Wikidata
	References

