
Wiki Workshop (10th edition) – May 11, 2023

An Efficient Approach to Store and Access Wikipedia’s Revision History

Amit Arjun Verma
2016csz0003@iitrpr.ac.in

IIT Ropar

S.R.S Iyengar
sudarshan@iitrpr.ac.in

IIT Ropar

Neeru Dubey
neerudubey@iitrpr.ac.in

IIT Ropar

Simran Setia
2017csz0001@iitrpr.ac.in

IIT Ropar

Abstract

For large-scale Wikipedia analysis, efficient
retrieval of past states of Wikipedia is a pre-
requisite. However, the lack of efficient tools
for managing the massive amount of pro-
vided data acts as a bottleneck. We present
a detailed analysis of online algorithms to
efficiently compress and retrieve the revi-
sion history of Wikipedia articles. We give
theoretical evidence that our methods per-
form efficient compression and extraction
while optimizing time and space complex-
ity. Moreover, the experiments on sampled
Wikipedia articles using the online parame-
ters extraction method show that our algo-
rithm can compress the dataset up to 93%
of its original size.

Keywords: Wikipedia, edit-history, datasets, nlp,
compression, algorithm

Introduction
Over the past decade, Wikipedia, the free online
collaborative encyclopedia, has been a subject of
enormous interest in the various research domains.
At the core of all the mentioned research is the
Wikipedia’s full revision history dataset. Each re-
vision of a Wikipedia article is being stored as the
combination of preceding revision and the current
edits, resulting in the accumulation of redundant in-
formation. Owing to this, the size of each article
reaches megabytes or even gigabytes. This massive
size of full revision history dataset acts as a bot-
tleneck in performing Wikipedia-based research as
the majority of these analysis tasks require a deep
investigation of each revision. we present an algo-
rithm to efficiently extract the edits by reconstruct-
ing a specific past state of Wikipedia from its edit
history. The rationale behind data compression is
to store the edits made in the current revision ex-
clusively. This compression is relatively simple and
can be achieved by taking the difference of the cur-
rent revision with the previous one using the diff
algorithm (Hunt and MacIlroy, 1976). However, it

is evident that there is a trade-off between the re-
trieval time and the compression of revisions. Thus,
to accelerate the reconstruction process, every kth

revision is stored as a full revision. A similar ap-
proach was followed by Ferschke et al. (Ferschke
et al., 2011), where the value of k (interval length)
was fixed to 1000 irrespective of input article. Fol-
lowing the lines of Ferschke et al.’s work, Verma et
al. (Verma et al., 2021) proposed a method for com-
pressing the revision history using the interval length
k =

√
n. We propose an online algorithm to com-

press and retrieve the Wikipedia article’s revisions,
which can scale up with the Wikipedia dataset size.
We show that our approach outperforms the previ-
ously established methods in terms of retrieval time
and space complexity. With the proposed algorithm,
we reduce the required storage space to less than 7%
of its original size.

Varibale-Interval Length Compression

Assume there are n revisions for a Wikipedia arti-
cle, define R = {ri | ri is the ithrevision, 0 ≤ i ≤ n}
to be the set of all n revisions of the article, where
r0 denotes the empty revision. R can also be con-
sidered as the XML dump of a Wikipedia article.
Let dri denote the difference between two consecu-
tive revisions i and i− 1 i.e., dri = ri 	 ri−1, where
	 : R × R → dR is the diff operator which is de-
fined as the smallest set of deletions and insertions
required to create one text from the other (Hunt and
MacIlroy, 1976). Thus, dR is the set of all difference
revision obtained from diff operator. Since edits
made in the current revision results in the successive
revision, ri can also be written as ri = ri−1 ⊕ dri,
where ⊕ : R× dR → R restores one of the revisions
that generated dr, acting as a decompressor. One
way of storing the data is to store only the differ-
ence dri, ∀i ∈ [1, n] rather than the entire revision.
A revision ri can be retrieved by loading dR to the
main memory and recursively constructing r1, r2,
· · · , ri using dr1, dr2, · · · , dri−1 respectively. More-
over, the reconstruction time and compression ratio
depends on the type of algorithm used to compute
the diff between the two revisions.

c© Copyright held by the owner/author(s), published under Creative Commons CC BY 4.0 License

https://creativecommons.org/licenses/by/4.0/

Wiki Workshop (10th edition) – May 11, 2023

We propose an online algorithm by storing the full
revisions at variable interval lengths. We translate
this optimization problem in to an ordered set par-
tition problem. More specifically, for a Wikipedia
article, we define S = {si | si = ||ri||, 0 ≤ i ≤ n}
as an ordered set of revision sizes, where ||ri|| rep-
resents the text length of revision ri ∈ R. For the
simplicity sake assume ||ri	ri−1|| = |si−si−1| (|.| is
the absolute function), which means we can compute
||dri|| = |si − si−1| (we will relax this assumption
later). Given a set S for a corresponding Wikipedia
article, we define P as a partition of the set S such
that:
(a) P = {p1, p2, p3, . . . , pN}, where N ≤ n.
(b) pj (for some j) is either a singleton set or if
sl, sm ∈ pj and if l < m, then si ∈ pj ∀i ∈ (l,m).
(c) Given pj = {si | l ≤ i ≤ m}, we define function
f− on pj as

f−(pj) =

si, if pj is a singleton

sl +
m−1∑
i=l

|si+1 − si|, otherwise

(d) Given pj = {si | l ≤ i ≤ m}, we define function
t on pj as

t(pj) =

1, if pj is a singleton

1 +
m−1∑
i=l

si + |si+1 − si|, otherwise

Given the partition and the function definition,
the summation

∑
f−(pj),∀j ∈ N represents the

overall size of the set S (i.e. size of the Wikipedia
article) after compression. Consider a simple exam-
ple where a Wikipedia article contains only three
revisions and their sizes are r1 = 1, r2 = 2, and
r3 = 8. Given the size of each revision, we can rep-
resent the set S = {1, 2, 8}. If we partition this set
S such that P = {{1}, {2, 8}} then

∑
f−(pj) will be

9, which we refer as the total space cost. But what
about the revision retrieval time? Given a revision
ri and the difference di = ri 	 ri+1, retrieving the
revision ri+1 will take O(||ri||+ ||dri||) time. Which
means that overall time cost for a given set S will
be

∑
t(pj),∀j ∈ N (in the case of S = {1, 2, 8}, the

time cost is 11, O(1) unit for r1 and r2, whereas
O(2 + 6) for r3). Now provided a set S, the problem
reduces to finding a partition P such that the over-
all time cost and the space cost is minimised. More
specifically:

•
∑

f−(pj),∀j ∈ N is minimized and,

•
∑

t(pj),∀j ∈ N is minimized.

However, the optimization function as the sum-
mation of space and time cost (

∑
f−(pj) +∑

t(pj),∀pj ∈ P) provides a solution other than the
original arrangement of the set S, only if there exists
at least two consecutive revisions having the differ-
ence precisely equal to 1. Moreover, the solution is
never unique. To overcome this challenge, we con-
vert the optimization problem into a memory cost
minimization problem based on a fixed time cost.
More specifically, given a set S and a fixed time
cost (as a function of n = |S|), the optimization
problem reduces to finding a partition P that min-
imizes the overall space cost. We first start with
computing the differences between all the consecu-
tive revisions. We compute the memory cost saved
as mri = ||ri−1||− ||dri||, whereas the time cost rep-
resents the time units required to retrieve a specific
revision. Given a fixed time cost, we aim to max-
imize the memory cost saved. It is easy to verify
that this maximization problem can be translated
into the 0/1 knapsack problem, where the time cost
is the knapsack size, and the memory cost saved is
the profit.

Results
The preliminary results show that optimal compres-
sion is performed using the variable-interval length
method. Moreover, we observe the optimal compres-
sion ratio and revision retrieval time when we fix
the maximum time cost (C) to nlogn. The variable-
interval length method (C = nlogn) even outper-
forms the fixed-interval length method in terms of
time (0.079 seconds on average) respecting the same
compression ratio (ratio of 0.168 on average). The
reason behind this optimality is the idea of col-
lating all the consecutive minor edits into a single
block. Furthermore, given a maximum time cost,
the method guarantees the optimal compression.

References
[Ferschke et al.2011] Oliver Ferschke, Torsten Zesch,

and Iryna Gurevych. 2011. Wikipedia revision
toolkit: efficiently accessing wikipedia’s edit his-
tory. In ACL, pages 97–102. Association for Com-
putational Linguistics.

[Hunt and MacIlroy1976] James Wayne Hunt and
M Douglas MacIlroy. 1976. An algorithm for dif-
ferential file comparison. Bell Laboratories Mur-
ray Hill.

[Verma et al.2021] Amit Arjun Verma, SRS Iyengar,
Simran Setia, and Neeru Dubey. 2021. An open
source toolkit to parse and analyze online crowd-
sourced portals.

c© Copyright held by the owner/author(s), published under Creative Commons CC BY 4.0 License

https://creativecommons.org/licenses/by/4.0/

